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ABSTRACT

Equations of motion appropriate to the conditions existing
in the ionosphere are discussed with a view to examine the con-
dition for ambipolar diffusion (Ve = Vi). It is shown that for
quasi-equilibrium and isothermal conditions the required con-

. dition for ambipolar diffusion is given by curl v x B = 0.

It is further shown that the assumption of ambipolar diffusion

. along the field lines leads to the trivial situation of hydro-
static distribution of electron density independent of latitude.

These results are not in agreement with the generally
accepted view that diffusion of the plasma along the direction
of the magnetic field can account for many geophysical phenomena
in the ionosphere. This disagreement is attributed to the fact
that the assumption of field-aligned plasma diffusion puts a
constraint on grad n, which has not been taken into account by
the previous workers. It is pointed out in the present paper
that the solution of Ve and Vi in terms of the particle densities
and temperatures are not possible without the knowledge of the
electric field. The theoretical determination of the latter appears
to be extremely complicated and it seems desirable to measure it

experimentally.
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Introduction

It now is generally accepted that diffusion plays an im-
portant role in controlling the distribution of ionization in
the F-region of the ionosphere. The theory of diffusion appropri-
ate to the conditions existing in the ionosphere was first pro-
posed by Ferraro (1945) who treated the electron-ion gas as a
single constituent and showed that the coefficient of diffusion
of this gas is reduced by the ratio of 1:sin21 in the presence
of the magnetic field, I being the inclination (dip) of the
earth's magnetic field. According to Ferraro, the vertical
component of the velocity of diffusion Vs for an isothermal
condition is given by

v, = - D sin’I [} ;:_‘i + -] (1)
e 1
where D is the coefficient of diffusion, n, the electron-density
Hl’ the scale height of electron-ion gas, and z the altitude.
Based on equation (1) the diffusive equilibrium-distribution
at places other than the magnetic equator is given by
z-2
n, = n_e” CH]) (2)
where n., is the electron-density at height z,

Equation (2) is in general accordance with the experi-
mentally observed distribution well above the Fz—peak both at
midlatitudes and above the equator even though according to
equation (1), the vertical diffusion is inhibited at the geo-
magnetic equator.

Several modifications have been proposed fo the original

theory of Ferraro to take into account the temperature gradient



and the effect of horizontal gradients but it has always been
assumed or implied that the diffusion is essentially ambipolar

(¥, = ¥;). Johnson and Hulburt (1950) , who treated the problem of
plasma diffusion in the ionosphere in great detail showed that

the electron-ion gas may diffuse together as a single constituent
in the absence of the magnetic field, with a coefficient of dif-
fusion and scale height twice that of the positive ions. 1In the
presence of the magnetic field, however, diffusion is not ambipolar
and is affected by the force exerted by the magnetic field on the
electrical currents.

In view of the generally-accepted conclusion that diffusion
plays a significant role in controlling the charged particle
distribution in the upper ionosphere, it is important to examine
if the condition for ambipolar diffusion actually exists in the
ionosphere where the effect of the magnetic field is significant.
The purpose of this paper is to investigate this problem in detail
and to specify the conditions which must be satisfied before the
assumption of ambipolar diffusion can justifiably be used in the
ionosphere.

Equation of Motion: In a multiple-component gas under the

action of external forces, the equation of motion obeyed by each
constituent may be written in the form proposed by Johnson (1951)
and Schliter (1951).

aw a;; e m, v
___§+?},_._S=_l i.p + F +):__L§_g'_(’{}_'\}) 3)
S - - S s m_+m L S

3t dr T L s 1

Ps

where the suffixes s and g stand for the type of the particles

and the various terms in equation (3) may be defined as follows:

VS = macroscopic velocity of the sth constituent

Pg density
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p, = pressure tensor; in general its ij-th element is given
by the following equation (Lamb 1932)

2 ov ov

= 2 — sk
(ps)ij = (pssij + 3 p Mg 5%, éij)—ps'ﬂs(ax

1S + SJ) (4)
J i
where Mg stands for the coefficient of kinetic viscosity.

e

S - — - —
FS = E + Vg X B) + 2V, X W = YQu;401F B (5)

where ﬁ, ﬁ, ey are, respectively, the electric field, the magnetic
* field and the charge, all expressed in MKS units, Qtidal is the
tidal force due to the sun and the moon and g is the acceleration
due to gravity. The terms ZVS x &, known as the Coriolis
acceleration appears because of the rotation of the terrestrial
coordinate system with the angular frequency w.

The last term in equation (3) represents the drag term. The
symbols m and m, are the masses of sth and gth kind of particles

y/
and v is the collision frequency of sth kind of particles with

Lth. s'%‘he summation with respect to ¢ is extended to cover all
possible collision partners including s = 4.

In discussing the problem of diffusion in the ionosphere we
shall assume only three types of particles: electrons, ions and
neutral atoms. Further, to simplify our discussion we shall ignore
the effect of viscosity, Coriolis-and tidal forces and consider the
equation corresponding to quasi-equilibrium conditions. The neglect
of viscosity removes the off-diagonal terms from the pressure term.
Further, p may be treated as a scalar given by the equation of
state

P = nSkTS (6)
where k is the Boltzmann constant and TS the kinetic gas temperature.
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In a collision-dominated plasma the assumption of isotropicity of

pressure is justified (Spitzer; 1962). Finally, we shall neglect

the quadratic terms in Vs and its derivative, thereby,

linearising

all the equations. The approximation made so far are just the

ones usually made in the study of the diffusion problem in the

ionosphere. The equations of motion for neutrals, electrons, ions

may now be written in the following form

N ad - -
Nhle aen(vn—ve) + o ny o'in(vn"vi)

=~ 9p  + o8

- - — -
n, . -V. -
ne 1 @ (Ve Vl) + nnne den (ve Vn)

g - en, (B +V_x B)

+ p e

e
- - - -
. . .- + . . .-
nn o (v1 ve) nn, o (V1 Vn)

1

+tp, E+ne B+, B

where

me mi vei

Yeoi =
(me+m.1)ni
o - Me My Ven

en

(me+mn)nn
_ mi mn Vin
Yin T T, . <
(mi+mn)nn

(7)

(8)

(9)

(104)

(10B)

(10C)

The suffixes e, i, n in equation 7-10 stand for electron,




ion and neutral molecule. For an isothermal condition, Y etc.
may be treated as constants.

The electric field E, in general, is the sum of external
and internal fields. Equations 7-9 should be supplemented by
Maxwell's equations and equations of continuity. We may then
write

e
v.E = (ni - ne)E (11)
o
where €o is the free space permittivity
Vxﬁ = 0 (12)
v.nv._ =R (13)
where Rs refers to the net volumetric rate of creation of sth kind
of particles.

We may derive from equations 7-9, the following set of

equations which will be useful in the subsequent discussion.

. ng V. + n.q. V. .4

T ~_Sence i“in i n (14)

n n o + n.o. n_ (n o + n.g..)

e en i“in n - e’en i“in
Ae + Ki + Kn + e (ni - ne)E + e ,(nivi - neve) xB=o (15)
where Ke,i,n = - 9P i,n + Pe,i,n® (16)

L(n @o, t+ niain)(ve - vl) + e (aenv + alnve)xﬁ
A 1,

+e(c"en * o’in) E = %in E; ~ %en E; 17)



where L= (o, + ) (18)
nea/ + n.o.

Ambipolar Diffusion

In the following we shall investigate the condition under

which the electron-ion plasma may diffuse together with a common

velocity v (usually called ambipolar diffusion or plasma diffusion)

such that

vV =9V. =V (19)

. o '
e(E +V x B) = _in e ___"en i (20)

It is clear that equation (20) must be satisfied if equation

(19) is valid. The required condition therefore is given by

Q.K/n Q/K./n.
evax§=vX[1nee_en11]=o (21)
aen+din aen+ain
since vx ﬁ =0

It is easy to verify that the R.H.S. of equation (21) is zero
for an isothermal condition. Thus, the assumption of Ve = Vi
leads to the following condition.

This condition is alwa®y fulfilled in the absence of a magnetic




field or when the motion is along the field lines. The last
condition is generally assumed to be valid in the F-region and

in the following we shall examine this case in detail.

Diffusion Along Field Lines
From equation (14) and (19)

V-V = n (23)

(n o n+nidin)nn

substituting equation (15) and equation (20) in equation (23) and

assuming
n.-n,
me<<mi and S <<l, we get
e,i
m,g
- - o~ 2kT 1 i ]
v-v_ < - = v - g (24)
n nn(den+diﬁ) n, e 2kT

In deriving equation (24), it is assumed that T, =T, =T. It

is evident that equation (24) does not explicitly depend on the
magnetic field. In the following, we assume for simplicity that
Vn<<3. This assumption may not be justifiable in general. However,
it can be easily verified that equation (22) still holds even in
this case. Equations (22) and (24) thus lead to the following

equation

-2KT
en+ain)

m.g
- o= 1 i _
eVx v x B = 9yx [nn(a (ﬁe vn, - QET) x B}—O (25)
Equation (25) specifies the condition for ambipolar diffusion and
must be solved to determine the required distribution. 1In the case
of field-aligned motion, i.e., when the plasma is diffusing along
the field lines, equation (25) is clearly satisfied. We shall

examine this case in the following.



In a spherical polar coordinate system coincident with the

center of the earth, we may write

-2KT [1 on, Mg
e

v =
r n 2kT
n
an
g =2 1 e (26)
nn(den+din) n, rab
~2KkT 1 1 ong
" n (o, tw; ) B, T si
n (o, to;,) ne ¥ sin 8 do

where r is measured positive outward and & and ¢ denote the geo-

magnetic colatitude and longitude. Further we may write

B=- B (Tr sin I + Te cos I) 27)

where Ir and Te are unit vectors along r and 6 directions and I
is the magnetic dip angle reckoned positive when the north seeking
pole of the needle points downward. The field aligned plasma

diffusion case using equations (26) and (27) yields the following

equation

an 3n
1 e 1 _ 1 1 e
i 3F T2 " n_ T o tanl (28)
e e
where
__ KT
H=%hz

Equation (28) is a partial differential equation and we shall




make use of it in solving the equation of continuity. Equation
(13), putting R, = 0, may be written

v.n, vV = Ji-jL (r2 n, vr) + 1 Ji(nevesine)
r° Jr , r sin © 386
+—1 9% (nv)=o0 (29)

r sin 9 3p * ¢

Again from equations (15, 19 and 20) assuming my = m and neglecting

n, or n, as compared to n. we may write

e
1 _ai':_ﬁf
nn ar kT
r-r
- - (=)
n ¥n e H (30)

where noo refers to the neutral density at height ro.
From equations (26), (28), (29) and (30) we get the following
differential equation

2
2 3 n an 2
taneo e e [ji 3 tan”8 3 1
(1 + =5 )arz +ar smtrt—a— (r+H)]
n 2
D e g b] oo @

In deriving (31), the dipole field approximation, i.e.,
tan I = 2 cot ¢, has been assumed. The solution of equation (31)
is given by

r r 2r
- X - 1 - 4L 2
ne(r,e) = Al(e)e 20 + Az(e)e 2H I ;§ e H (4+tan“e)dr (32)

where Al(e) and Az(e) are two arbitrary functions of g but are

independent of r and must be evaluated to determine equation (32)

10



uniquely. It is seen, however, that if equation (32) is
substituted in equation (28) the only permissible values of
Al(e) and Az(e) are when

Al(e) = const = A1

Az(e) = 0

I1f we allow any other value of Az(e), the resulting differential
equation of Az(e) has a solution which is not independent of r.
This, however, is self-contradictory. We thus obtain
e-r/2H

n = A

e 1l (33)

A similar result may be obtained if equation (31) is written
in terms of variable of 6 instead of variable of r. 1In this case

we obtain the following differential equation.

2

o I an

—S + [% - (1+4cotze)] °°t92 € _o (34)
36 1+4cot2g 30

The solution of equation (34) may be written in the form
1+300529 r/6H
ne(r,e) = Bl(r) + Bz(r) f (___Z____) sine ds (35)

where Bl(r) and Bz(r) are arbitrary functions of r and must be
evaluated from boundary conditions. Again substituting equation
(35) in equation (28) we find, following the arguments given before,
that

Bz(r) =0

-r/2H

N = Bl(r) = const e (36)

e
which is equivalent to equation (33).
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Equation (36) corresponds to the hydrostatic distribution
of electron density with a scale height twice that of the neutral
and is also obtained when Vv = 0.

As a result of the previous analysis it is clear that the
assumption of ambipolar diffusion in the ionosphere requires that
vx v x B =0. 1In studying the effect of ambipolar diffusion on
the charged particle distribution in the ionosphere, this point
must be taken into account. In particular, the assumption of
" plasma diffusion along the field lines leads to the condition of
hydrostatic distribution implying that V = 0, independent of
) geomagnetic latitude.

Discussion

The results obtained in the preceding section are not in
agreement with the findings of Kendall (1962) Lyon (1963),
Rishbeth et al (1963) and Goldberg and Schmerling (1963) even
though all these authors have studied the case of plasma diffusion a-
long the field lines. The disagreement arises due to the fact that
they have not taken into account the additional constraint on
vn given by equation (28) which automatically results from the
assumption of field aligned plasma diffusion. However, in the
opinion of this author this point must be taken into account.
In view of the great geophysical importance of this problem we shall
pursue this point a little further and investigate the limitations
of solving this problem when 3;# Vi. For the conditions existing
in the F-region where the gyro-frequency is much greater than the
collision frequencies it is shown in the appendix that

— _ -3y = 1 -
Vg T e(—ye+6eyi)(ﬁ.h)h - (ye+5eyi)(HeVpe,H)h

+ (myy tms v;) (E.B)R (37)
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vi - e(Yi_5iYe)(E.ﬂ)B - (Yi+5iYe)(%evpe.H)B

+ (miyi+meaiye)(§.ﬁ)ﬁ (38)

where R is the unit vector along the field lires and the coefficient
Yer Yi etc. are defined by equation A-3 in the appendix. It is
evident from equations (37) and (38) that both electron and ion
velocities are along the magnetic field when their gyra freguencies
are much greater than their respective collision frequerncies.
However, it is not at all evident that the magnitudes of the two
velocities are equal. It is not possible to make any further
simplification of equations (37) and (38) since the mathematical
problem leading to the soiution for the eleciric field is extremely
difficult. In order to avoid this difficulty one generally assumes

- -

Vo =V, = V. In this case the electric field can be easily

eliminated from equations (37) and (38) leading to the well kuown
expression for the diffusion velocity.

v = Ye¥i { [2 vp, + (m +m. )g] ﬁ}ﬁ (39)
Yetvi

or in the component from

an _T
_ 1 e 1 e 1 P2
Ver =~ MG 5t 7wy tam)sinl
e e i
dn d>T
11 e 1 e . } N
+ (5 S5 t T SE—)COSISIAI (40)
e e
dn 3T,
= _nf L e 1
Vag = D{(ne 3T +’Te Y + —ﬁ—)SIHICOSI
on AT
11 1 e 2
+ (&2 =&+ 5 —=)cos I}
. rn, 90 Te d
where D = 2kTe ?Eil_ may be interpreted as diffusion coefficient,
e Vi
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Equation (40) has been the basis of studying the diffusion
problem in the ionosphere. However, in the light of the discussioﬁ
presented in this paper it is evident that under the assumption
of ;e = Vi’ the correct expression for V is given by equation (24)
which does not explicitely depend on the magnetic field irrespective
of the relative magnitude of gyro and collision frequencies. The
dependence on the magnetic field comes from equation (22) which
is the required condition for Ve = Vi.

Unfortunately, there is no simple way of solving for Ve and
Vi in terms of the particle densities and temperatures. In order
to avoid the mathematical complexities, it may perhaps be desirable
to devise experimental techniques for measuring the electric field.
This will certainly be an important step in our understanding of

the very intricate problem of diffusion in the ionosphere.

Appendix

If Vn<<7e or 31’ we may rewrite equations 8 and 9 in the
following form.

—) — e -
Vo t hg Vg R = ye(—eﬁ + E;)+6evi (A-1)
vty Yy X B = yi(eﬁ + ET)+ 8:Ve (A-2)

1

where R is a unit vector along the field lines and the coefficients

Yer Yi etc. are given by the following equations.

Yo & 1
e
Dot ey
3 1
Yi ©—
ne°'ei+nn°'in
e T eBYe (A-3)



= . .
e 1°'e1Ye

. = 1n Y.
i e"ei'i
The coefficient Ae and Ay may be interpreted as the ratio of
gyrofrequency and the effective collision frequencies of electromus
and ions respectively. Further, 5e and Gi are the coupling terms
between electron and ion motion through collision. Obviously,
5e and 61 are zero if vV, = V; since the terms containing ogq are
Zero.

Equations (A-1) and (A-2) may be solved for Ve and V.. We

i
thus obtain

1-Ahj=884

. R s (o)
Ve = el 2 { YeGe[l+ a— ]
(1-A ) ;=868;) +(xe+xi) I-aehj=8e83
. vo (G, -B)E [(x et i) (gth 8684) o]
i*e
1-6e51 1—>‘e)‘i_6esi
- AatA
+ yeﬁ x G [ e 1 - )‘1]
- Y (G .B)R Giatry)
T 6oy5Gy F et [ - Xixe]
1"6e6 l-leki"é 6
- = Xe+xi
t bgy; Box Gy [ ]} (4-4)

where
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=

6. ==eﬁ +

1
(A-5)
1 ni

A similar expression can be written for Vi by interchanging the
suffixes e and i.

of
of
we

as

At this stage it is appropriate to make a numerical estimate
the coefficients Aer Yer etc. in order to get a physical insight
equation (A-4). For the conditions existing in the F-region,
adopt the following numerical values of the collision frequencies

given by Chapman (1956). These frequencies correspond to his

model h(T = 14800). Thus we may write

Vgi = 268/sec
Ven = 37.4/sec
Vip = 1/sec
Again w_ = %E = 5.2 x 10%/sec where B = 0.3 x 10~% Weber
w; = %g = 1.5 x 102/sec assuming m, = 19 amu
i

Substituting these values in equation (39) and neglecting m,

as

compared to m; we obtain

Ag ¥ 1.7 x 10
Ay ¥ 2.8 x 102
v; ¥ 0.6 x 10%° sec/Kgn

16



Yo ~ 3.5 x 1027 sec/Kgm

"

.88

1.54 x 10~2

on
N

From the above computations it is clear that Ae and
Xi>>1;"6é:1 and 5i<<1. With these approximations, equation (A-4)
can be written in the following from

g . BxG a.
Ve =Yg [——% + (Ge.ﬁ)ﬁ + e] +6eYi[— =
xe Xe Xexi

BxG.
+(@, . B)E + e E +31 )]
Aeri Ai R

(A-6)

A further approximation of equation (A-6) results in the following
equation.

Vo T v @, - BB + 5y, (G, .H)E (A-7)

e Ye

Following the same procedure for Vi, we may write
V, ¥ y;@;.B)E + 5,y (@G .DE (A-8)

We may further write, assuming % vp

Y e
G, and Gi from equation (A-5) e

= % vp;, and substituting for
i

Vo = eloygtboyy) BBE - (y +8.v;) G vp BB
e

+ (m_y +m;6 ;) (E.H)R (A-9)

e¥i
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¥y = elrym8yv0) BE - (yyteyv,) G5 7P B
+ (myy;+m 6,v ) (8. H)E (A-10)
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